Feature Subset Selection by Bayesian network-based optimization
نویسندگان
چکیده
منابع مشابه
Ant Colony Optimization for Feature Subset Selection
The Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It has recently attracted a lot of attention and has been successfully applied to a number of different optimization problems. Due to the importance of the feature selection problem and the potential of ACO, this paper presents a novel method that ut...
متن کاملFeature Subset Selection Using Ant Colony Optimization
Feature selection is an important step in many pattern classification problems. It is applied to select a subset of features, from a much larger set, such that the selected subset is sufficient to perform the classification task. Due to its importance, the problem of feature selection has been investigated by many researchers. In this paper, a novel feature subset search procedure that utilizes...
متن کاملCompression-Based Feature Subset Selection
Irrelevant and redundant features may reduce both predictive accuracy and comprehensibility of induced concepts. Most common Machine Learning approaches for selecting a good subset of relevant features rely on cross-validation. As an alternative, we present the application of a particular Minimum Description Length (MDL) measure to the task of feature subset selection. Using the MDL principle a...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملSubset Selection by Pareto Optimization
Selecting the optimal subset from a large set of variables is a fundamental problem in various learning tasks such as feature selection, sparse regression, dictionary learning, etc. In this paper, we propose the POSS approach which employs evolutionary Pareto optimization to find a small-sized subset with good performance. We prove that for sparse regression, POSS is able to achieve the best-so...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence
سال: 2000
ISSN: 0004-3702
DOI: 10.1016/s0004-3702(00)00052-7